8,698 research outputs found

    Spectrum of Higgs particles in the Exceptional Supersymmetric Standard Model

    Full text link
    We discuss the spectrum of Higgs bosons in the framework of the exceptional supersymmetric standard model. The presence of a ZZ' and exotic particles predicted by the exceptional SUSY model allows the lightest Higgs particle to be significantly heavier than in the MSSM and NMSSM. When the mass of the lightest Higgs boson is larger than 135140GeV135-140 {GeV} the heaviest scalar, pseudoscalar and charged Higgs states lie beyond the TeV{TeV} range.Comment: Presented at 12th Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 25-31 August 2005, some minor changes to the text, references adde

    Collapses and revivals of stored orbital angular momentum of light in a cold atomic ensemble

    Full text link
    We report on the storage of orbital angular momentum of light in a cold ensemble of cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The stored information can be manipulated by an applied magnetic field and we were able to observe collapses and revivals due to the rotation of the stored atomic Zeeman coherence for times longer than 15 μs\mu s.Comment: Submitted to Physical Review

    Double Higgs production at TeV Colliders in the Minimal Supersymmetric Standard Model

    Get PDF
    The reconstruction of the Higgs potential in the Minimal Supersymmetric Standard Model (MSSM) requires the measurement of the trilinear Higgs self-couplings. The `double Higgs production' subgroup has been investigating the possibility of detecting signatures of processes carrying a dependence on these vertices at the Large Hadron Collider (LHC) and future Linear Colliders (LCs). As reference reactions, we have chosen gghhgg\to hh and e+ehhZe^+e^-\to h h Z, respectively, where hh is the lightest of the MSSM Higgs bosons. In both cases, the HhhHhh interaction is involved. For mH>2mhm_H>2m_h, the two reactions are resonant in the HhhH\to hh mode, providing cross sections which are detectable at both accelerators and strongly sensitive to the strength of the trilinear coupling involved. We explore this mass regime of the MSSM in the hbbˉh\to b\bar b decay channel, also accounting for irreducible background effects.Comment: LaTeX, 23 pages, 13 PostScript figures (contribution to the Summary Report of the Higgs WG, Workshop `Physics at TeV Colliders', Les Houches, France, 8-18 June 1999): some modifications to the bibliograph

    Dynamics of a stored Zeeman coherence grating in an external magnetic field

    Full text link
    We investigate the evolution of a Zeeman coherence grating induced in a cold atomic cesium sample in the presence of an external magnetic field. The gratings are created in a three-beam light storage configuration using two quasi-collinear writing laser pulses and reading with a counterpropagating pulse after a variable time delay. The phase conjugated pulse arising from the atomic sample is monitored. Collapses and revivals of the retrieved pulse are observed for different polarizations of the laser beams and for different directions of the applied magnetic field. While magnetic field inhomogeneities are responsible for the decay of the coherent atomic response, a five-fold increase in the coherence decay time, with respect to no applied magnetic field, is obtained for an appropriate choice of the direction of the applied magnetic field. A simplified theoretical model illustrates the role of the magnetic field mean and its inhomogeneity on the collective atomic response.Comment: To appear in J. Phys.

    Cost Monotonic "Cost and Charge" Rules for Connection Situations

    Get PDF
    The special class of conservative charge systems for minimum cost spanning tree (mcst) situations is introduced.These conservative charge systems lead to single-valued rules for mcst situations, which can also be described with the aid of obligation functions and are, consequently, cost monotonic.A value-theoretic interpretation of these rules is also provided.cost allocation;minimum cost spanning tree situations;cost monotonicity;sharing values

    The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations

    Get PDF
    The aim of this paper is to introduce and axiomatically characterize the P-value as a rule to solve the cost sharing problem in minimum cost spanning tree (mcst) situations.The P-value is related to the Kruskal algorithm for finding an mcst.Moreover, the P-value leads to a core allocation of the corresponding mcst game, and when applied also to the mcst subsituations it delivers a population monotonic allocation scheme.A conewise positive linearity property is one of the basic ingredients of an axiomatic characterization of the P-value.costs;games;allocation;population

    The Bird Core for Minimum Cost Spanning Tree problems Revisited: Monotonicity and Additivity Aspects

    Get PDF
    A new way is presented to define for minimum cost spanning tree (mcst-) games the irreducible core, which is introduced by Bird in 1976.The Bird core correspondence turns out to have interesting monotonicity and additivity properties and each stable cost monotonic allocation rule for mcst-problems is a selection of the Bird core correspondence.Using the additivity property an axiomatic characterization of the Bird core correspondence is obtained.cost allocation;minimum cost spanning tree games;Bird core;cost monotonicity;cone additivity

    Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts

    Get PDF
    In order to describe and quantify the reactivity of silicate melts, the ionic notation provided by the Temkin formalism has been historically accepted, giving rise to the study of melt chemical equilibria in terms of completely dissociated ionic species. Indeed, ionic modelling of melts works properly as long as the true extension of the anionic matrix is known. This information may be attained in the framework of the Toop-Samis (1962a,b) model, through a parameterisation of the acid-base properties of the dissolved oxides. Moreover, by combining the polymeric model of Toop and Samis with the «group basicity» concept of Duffy and Ingram (1973, 1974a,b, 1976) the bulk optical basicity (Duffy and Ingram, 1971; Duffy, 1992) of molten silicates and glasses can be split into two distinct contributions, i.e. the basicity of the dissolved basic oxides and the basicity of the polymeric units. Application to practical cases, such as the assessment of the oxidation state of iron, require bridging of the energetic gap between the standard state of completely dissociated component (Temkin standard state) and the standard state of pure melt component at P and T of interest. On this basis it is possible to set up a preliminary model for iron speciation in both anhydrous and hydrous aluminosilicate melts. In the case of hydrous melts, I introduce both acidic and basic dissociation of the water component, requiring the combined occurrence of H+ cations, OH- free anions and, to a very minor extent, of T-OH groups. The amphoteric behaviour of water revealed by this study is therefore in line with the earlier prediction of Fraser (1975)

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given
    corecore